
S.6 PHYSICS PAPER I REVISION QUESTIONS (13th AUG 2020

Assume where necessary;

- Speed of light, c in vacuum = $3.0 \text{ x} 10^8 \text{ms}^{-1}$
- Plank's constant $h = 6.6 \times 10-34 \text{Js}$
- Electron charge, $e = 1.6 \times 10^{-19} C$
- 1electron volt (eV) = $1.6 \times 10^{-19} J$
- Electron mass = $9.11 \times 10^{-31} \text{kg}$
- 1. (a) State Rutherford's model of the atom and outline the experimental evidence in support of the model.

- (b) The diagram above depicts possible electron orbits in the Bohr model for the hydrogen atom. Assume the orbits are circular.
- (i) Show that the total energy of an electron in an orbit of radius r is given by $E = \frac{-e^4}{8\pi\pi\epsilon_0 r}$, where e is the electron charge.
- (ii) If only the orbits are allowed for are those where by $mvr = \frac{nh}{2\pi}$, where m is the electron mass, v is the electron speed n an integer and h planck's constant. Show that the total energy in (i) above can be expressed as $E_n = \frac{-me^4}{8e^2h^2n^2}$.
- (iv) Calculate the wavelength of the radiation that will be emitted when the electron makes a transition from n = 4 to n = 3.

2.	The figure	below	shows	some o	of the	energy	levels of	of a	neon	atom.

<i>E</i> _∞	0.00eV
E_4	0.81eV
E_3	2.77eV
E_2	4.87eV
E_1	21.47eV

Calculate the wavelength of the electromagnetic radiation when an electron makes a transition from E_3 to E_2 . State the region in which the radiation lies.

- 3. (a) (i) State Bohr's postulates of the hydrogen atom. (2 Marks)
- (b) The diagram below shows possible electron orbits in the Bohr atom for hydrogen. Assuming the orbits are circular and that the total energy of the atom is

$$E_n = -\frac{me^4}{8 \varepsilon_0^2 n^2 h}$$
, where m, is the Mass of an electron

e is the charge of an electron, n is the principle quantum number

h is Planck's constant, ε_0 is the permittivity of free space.

Calculate the wavelength of the radiation that will be emitted when the electron makes a Transition from n=3 to n=2. (7 Marks)

- (c) The energy levels in a mercury atom are -10.4 eV, -5.5 eV, -3.7 eV and -1.6 eV.
 - (i) Find the ionization energy of mercury in joules. (2 Marks)
 - (ii) What is likely to happen if a mercury atom in unexcited state is bombarded with an electron of energy 4.0 eV, 11.0 eV? (3 Marks)
 - (d) State the shortcomings of the Bohr' model.
- 4. (i) What is meant by photoelectric emission?
 - (ii) State the characteristics of photo electric emission.
 - (b) Describe a simple experiment to demonstrate photoelectric emission.
 - (c) Sodium has a work function of 2.3eV and is illuminated by light of wavelength 5.0 x 10-7m. Find the;

- (i) threshold frequency of sodium. (1mark)
- (ii) maximum velocity of the photoelectrons emitted. (3marks)
- (iii) stopping potential with light of this wavelength. (3marks)
- (d) (i) Explain any one application of photoelectric emission. (3marks)
 - (ii) Draw a sketch graph showing the variation of photo current with potential difference across a photocell for two different intensities but the same frequency of incident radiation. (2marks)